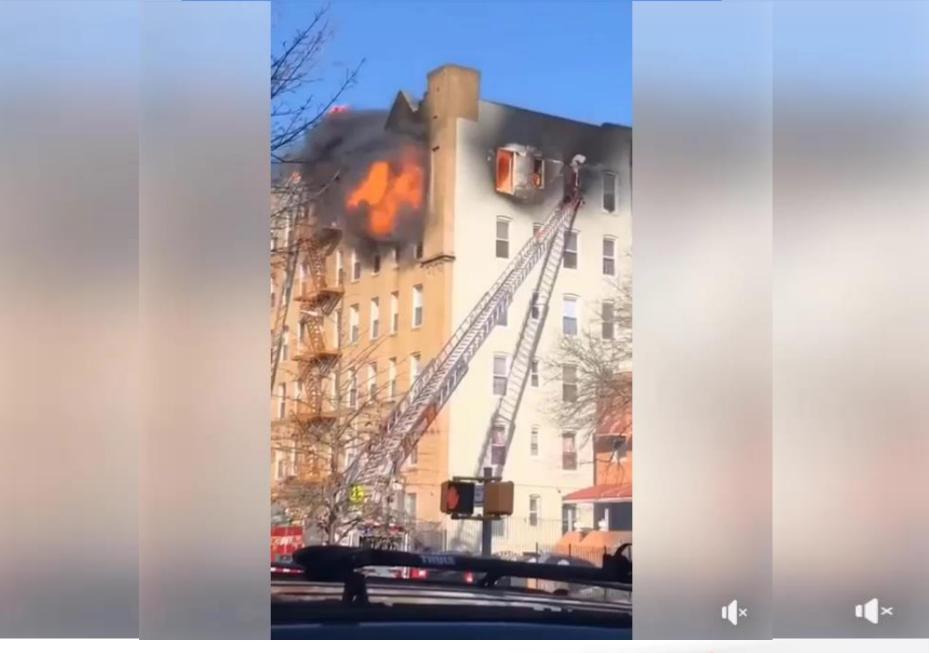

Size Up & Decision Making Wind Driven Fires

Peter McBride CRSP Division Chief Safety & Innovation (Retired) Ottawa Fire Service May 19, 2022


Smoke Movement & Control

OHIO

NUST

Research for High Rise Buildings

Seek Knowledge In Fire

Ottawa Fire Services

Fire Assessment VP=BE+SAHF

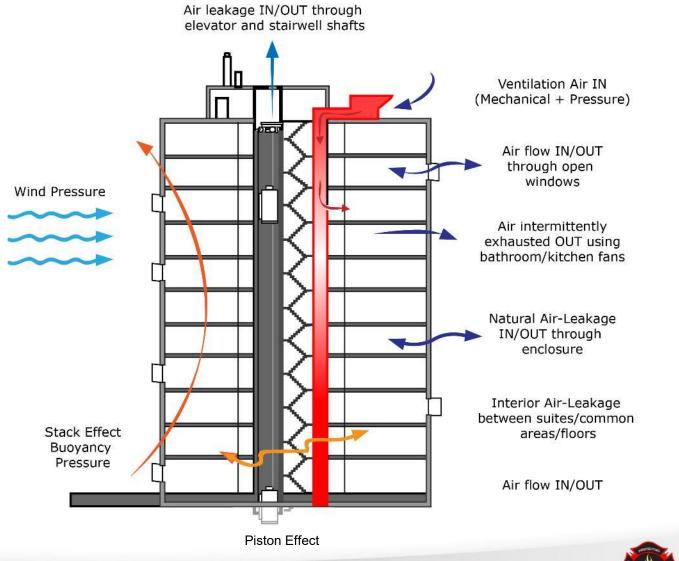
Shan Raffel

Reading the Fire Article 2008

- Around 1999, firefighters were being taught to recognize the "signs and symptoms of Flashover" and the "signs and symptoms of Backdraught".
- This information provided a foundation for the skill of reading the fire. There was no mention of the indicators that could lead to a "fire gas ignition", and I saw the need for a simple method of assisting firefighters to rapidly make a risk assessment of the fire behaviour indicators.
- After a lot of research, I came up with a simple mnemonic, SAHF. To be effective, it is essential that any fireground mnemonics is simple to remember and logical in order.

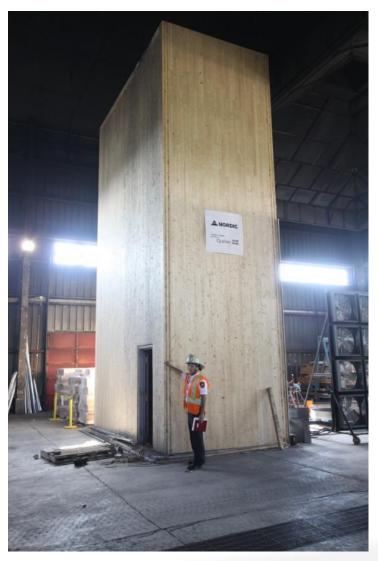
VP = BE + SAHF

The integrated evaluation of fire conditions within a structure using the Ventilation Profile, Building and Invironmental Factors, along with the Smoke, Air, Heat and Flame indicators, for the purpose of strategic and tactical decision making.



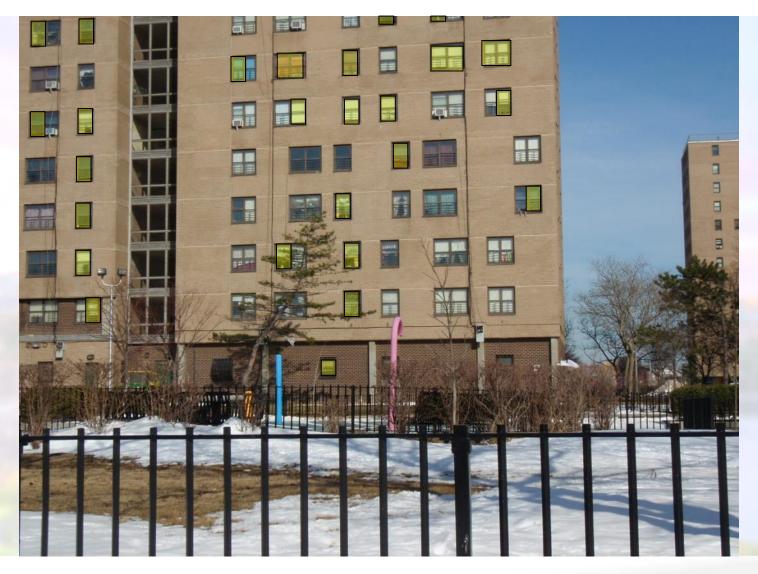
Ventilation Profile:

The appearance of the <u>entire</u> fire building's ventilation openings, showing the flow paths of any air movement into the structure as well as smoke, heat or flame out of the structure. (FKTP > NFPA 1700)



- Principles
 - Loads
 - Forces
 - Material characteristics
 - Structural elements
- Types of Construction
 - FR, NC, O, HT, WF, + PBD
- Math vs Mass

- Occupancy
- Compartmentation
 - Building envelope
 - Cladding
 - Interior wall & ceiling finishes
 - Thermally thick or thin
 - Compartment size
 - Area, height, open volume



- Openings
 - Horizontal/vertical
 - Internal/external
 - HVAC
- OCCUPANT BEHAVIOUR!

OCCUPANT BEHAVIOUR!

- Compartmentation
 - Fuels
 - State Solid/Liquid/Gas
 - Contents vs Structure
 - Flashover as a benchmark
 - Protective Features
 - Passive Systems
 - Rated assemblies, stopping
 - Active Systems
 - Sprinklers, Pressurization

VP = BE + SAHF Environmental Factors

- Weather
 - Wind speed & direction
 - Accelerate fire growth
 - Fire spread via forced convective heat transfer, direct flame contact or ember transport
 - O₂ supply replenished
 - Air pressure differences that drives Smoke/Air/Heat/Flame movement*

Environmental Factors

- Temperature & humidity

Impact the rate of combustion by drying fuels

VP = BE + SAHF Environmental Factors

Weather

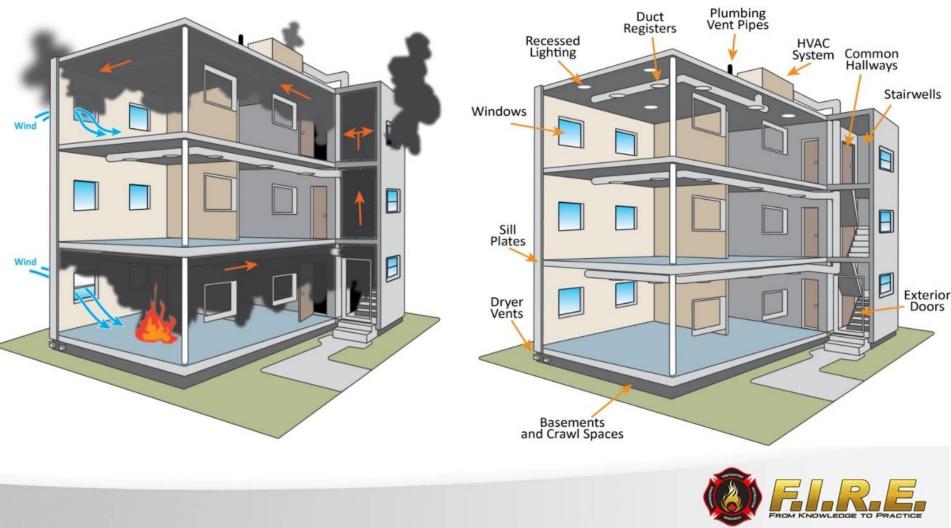
Drives stack effect

- **AP BE H SAHF Environmental Factors** Weather Continued • Stack Effect (Chimney) • Buoyancy due to:
 - Inside vs. outside air temperature and humidity
 - Differential pressures

VP = BE + SAHF Environmental Factors

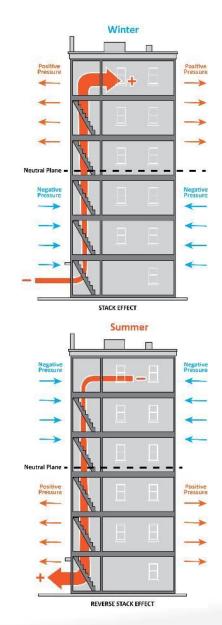
Differential pressures

VP = BE + SAHF

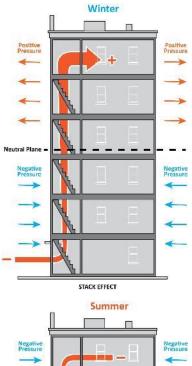

Environmental Factors

Weather Continued

- Stack Effect (Chimney)
 - Buoyancy due to:
 - Inside vs. outside air temperature and humidity
 - Differential pressures
 - Building leakage



VP = BE + SAHF Environmental Factors


- Weather Continued
 - Height
 - Note: Stack effects in winter are significant even in a one or two storey house and very significant in tall buildings.
 - Reverse stack effects are possible in warm climates within air condition buildings.
- Significant stack effect can produce the same forced combustion and vent characteristics as a wind impacted fire, without the presence of a wind condition.



VP = BE + SAHF Environmental Factors

- Large pressure differences are possible, and may be compounded by opening and/or failing to close doors by firefighters or occupants.
- The failure to manage the resultant flow path(s) dominated by stack effect has resulted in serious injury and death.

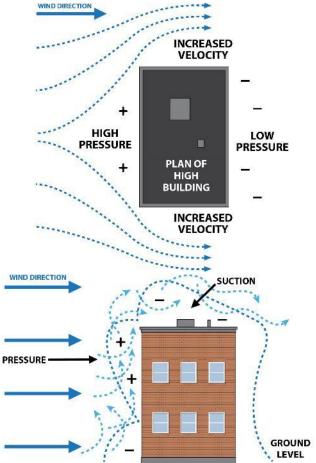
Environmental Factors

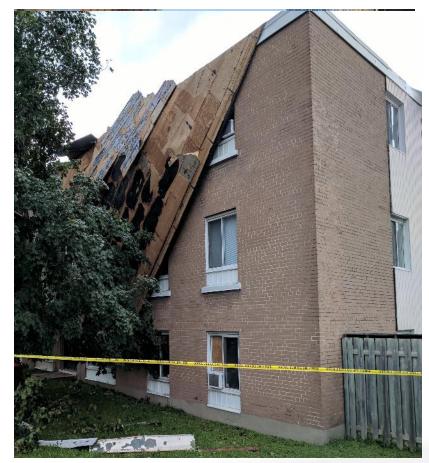
Weather Continued

- Low Temperatures
 - Rapid cooling results in loss of buoyancy
 - Entrained water condenses & larger particles precipitated out producing dense white smoke
 - Smoke characteristics may conceal intensity of fire
 - Possibility of inversion layer

VP = **BE** + **SAHF** Building and Environmental Factors

Topography


Building and Environmental Factors


Topography

- Effects caused by variations in elevation of land and/or buildings and building geometry.
- Can generate significant aerodynamic effects even in low to moderate wind conditions such as:
 - Pressure zones
 - Buffeting
 - Rip currents
 - Vortices

Building and Environmental Factors

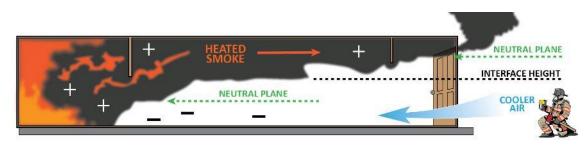
VP = BE + SAHF Smoke, Air, Heat and Flame Indicators

- Indicators
- May be assessed individually
- Don't focus on one indicator
- Assess in context of Building and Environmental factors
- Use to establish the VP

Smoke, Air, Heat and Flame Indicators

Smoke Movement & Control

- Of critical importance in assessing & managing effects of fire
- Driven by:
 - Stack effect & HVAC
 - Buoyancy
 - Expansion
 - Wind


VP = BE + SAHF Smoke, Air, Heat and Flame Indicators

Smoke Assessment

- Volume
- Velocity (Temperature/Expansion/Bouyancy)
- Density (Optical)
- Colour (Black, Grey, Brown, White, Odd)

LOOK FOR CHANGES!

Air

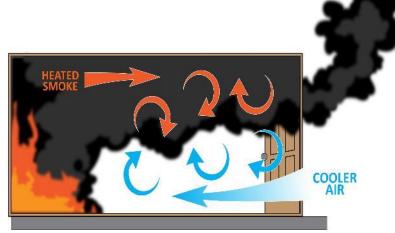
- Invisible
- Indicated by the movement of <u>contrasting Smoke</u> and its:
 - Stratification within the boundaries of a compartment or opening
 - Degree of <u>turbulence</u>
 - Direction, velocity and shape
 - Height of interface height & neutral plane
- The single most important factor in fire growth and decay!

$\mathbf{VP} = \mathbf{BE} + \mathbf{SAHF}$

Smoke/Air Flow, Heat and Flame Indicators

Smoke/Air Flow

- Layering a function of the gravity current
- Read together to quickly establish the:
 - Burning regime
 - Flow path(s)
 - Ventilation profile (Vent profile)



$\mathbf{VP} = \mathbf{BE} + \mathbf{SAHF}$

Smoke/Air Flow, Heat and Flame Indicators

Gravity Current

- A gravity current occurs because the density of fresh air is higher than the density of the hot smoke inside the compartment
- Gravity current layering can be disrupted by wind or the combustion cycle and create an irregular or <u>dynamic flow(s)</u> and indicate extreme or unstable fire conditions

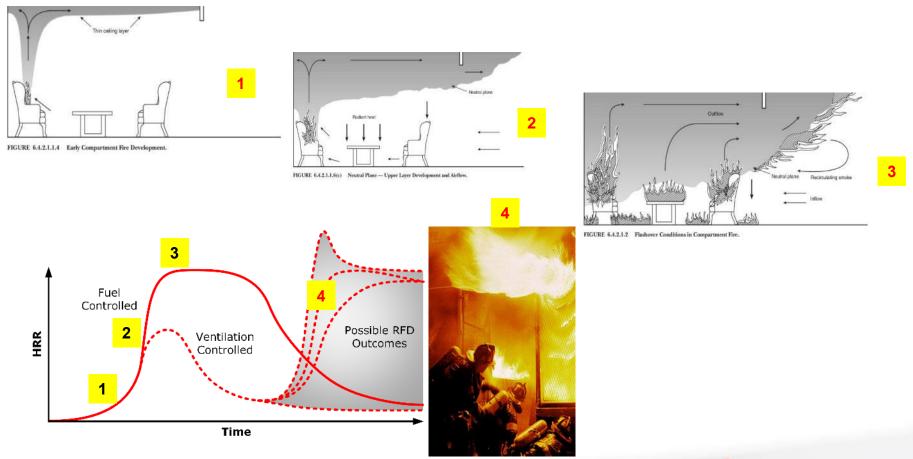
- **Burning Regimes**
- Fuel Controlled
 - Fire growth is limited by the available fuel supply
- Ventilation Controlled
 - Fire growth is limited by the available air/oxygen supply

Flow path is the route followed by smoke, air, heat or flame toward or away from an opening; typically, a window, door or other leakage points due to pressure differences. (FKTP > NFPA 1700)

The flow is caused by pressure differences that result from temperature differences, buoyancy, expansion, wind impact and HVAC systems.

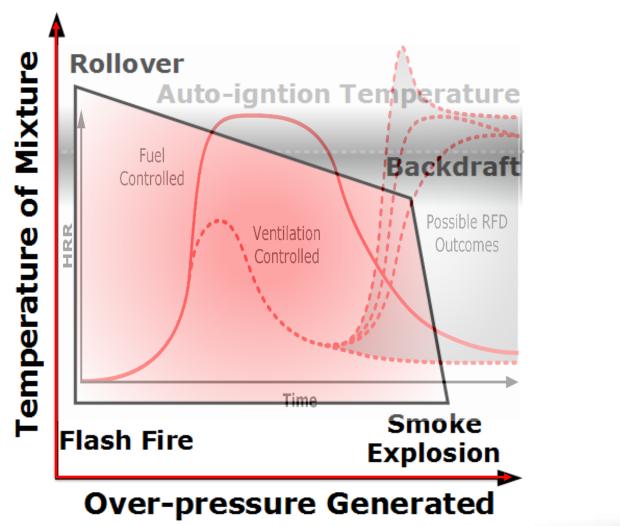
- Stack effect & HVAC
- Buoyancy
- Expansion
- Wind

<u>Flow characteristics include</u> <u>stratification</u> within the boundaries of a compartment or at an opening, degree of <u>turbulence</u>, its <u>direction</u>, <u>velocity</u> and <u>shape</u>.


These characteristics can often be identified by evaluating the smoke/air flow.

$\mathbf{VP} = \mathbf{BE} + \mathbf{SAHF}$

Smoke/Air Flow, Heat and Flame Indicators


Rapid Fire Development SAHF Assessment

- Flashover
- Smoke Ignition
 - Smoke Explosion
 - Backdraft
 - Flash Fire
 - Rollover
 - Pockets of Flame
 - Vent Ignition

Rapid Fire Development

Impending Flashover Indicators SAHF Assessment

- Smoke/Air Flow:
 - Neutral Plane Height Descending
 - Stratification/Shape Wedge to Conical
 - Air Velocity High
 - Flow Turbulent

Impending Flashover Indicators SAHF Assessment

- Heat
 - Melting/ Pyrolysis Upholstery
 - Pyrolysis at floor
- Flame (Flash Fire)
 - Pockets of flame or rollover
 - Auto Ignition outside

- At openings, or within rooms, the smoke/air flow flow(s) may be classified as:
 - Unidirectional flow
 Bidirectional flow
 Dynamic flow

$\mathbf{VP} = \mathbf{BE} + \mathbf{SAHF}$

Smoke/Air Flow, Heat and Flame Indicators

- Multiple flow paths are possible within a structure fire, there may be multiple combinations of inlets and/or outlets
- Flow paths can be altered by firefighting tactics.

Vent Profiles of a wind-driven fire

- Eccentric showing from corners of a window, but not from the centre of the window.
- Projected exiting horizontally from the vent opening.
- **Inverted** exiting the vent over the bottom of the window sill.
- Hollowed flames and smoke in an open window, but the opening is not venting flames or smoke.

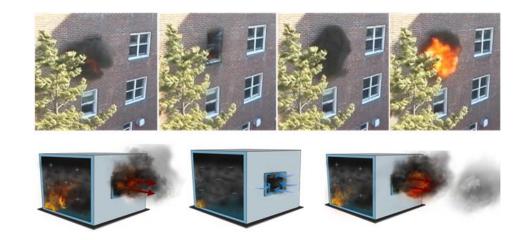
Pulsations

- Puffing pushing and puffing from an open vent in a pulsating pattern.
- Star Fire issuing from the building and being flattened against the building's surface.



Unidirectional Flow:
A flow of smoke or air moving
in a single direction. (FKTP > NFPA 1700)

Bidirectional Flow: A smoke/air flow moving in opposing directions. (FKTP >> NFPA 1700)

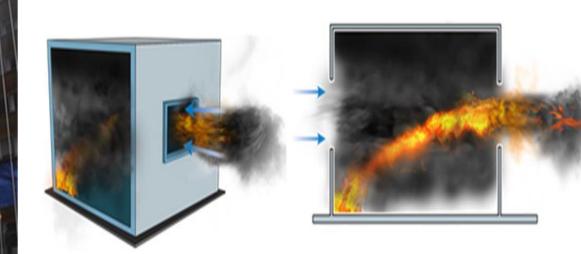


$\mathbf{VP} = \mathbf{BE} + \mathbf{SAHF}$

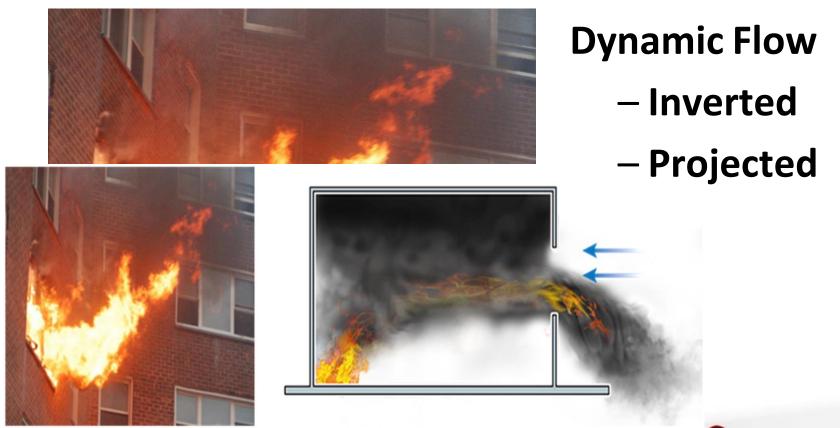
Smoke/Air Flow, Heat and Flame Indicators

***** Dynamic Flow:

A unidirectional or bidirectional flow of smoke/air that presents irregular stratification and shape or alternates in direction (pulsations). (FKTP >> NFPA 1700)



Dynamic Flow


– Eccentric

Dynamic Flow

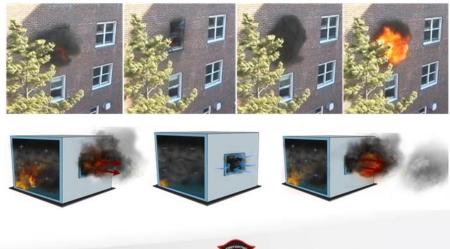
- Inverted
- Eccentric
- Projected

$\mathbf{VP} = \mathbf{BE} + \mathbf{SAHF}$

Smoke/Air Flow, Heat and Flame Indicators

Dynamic Flow

- Hollowed


$\mathbf{VP} = \mathbf{BE} + \mathbf{SAHF}$

Smoke/Air Flow, Heat and Flame Indicators

Dynamic Flow

– Pulsations - Puffing

Dynamic Flow

– Pulsations - Starfire

Air Geometry

Observe the Difference !

Decision Making Tactical Bricks

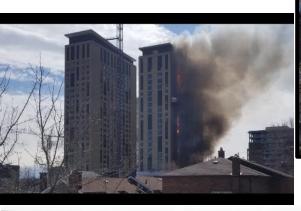
- Provide guidance to firefighters on how to implement the Incident Commander's Strategic Objectives.
- Allow firefighters to choose and combine methods or techniques based on assessment and evaluation of the fire condition.
- Describe the use of extinguishing media and the movement and control of smoke, air, heat and flame.

Action slide guide

- •Tactical Objective What the commander wants
- •How It Works Fire dynamics principles
- •Tactical Considerations How we do it: Company officer
- Preferred Technique How we do it: Task level
- •Alternative Technique Have a Plan B
- Safety Considerations Keeping out of trouble

Action: Water Application

Tactic: Exterior Control

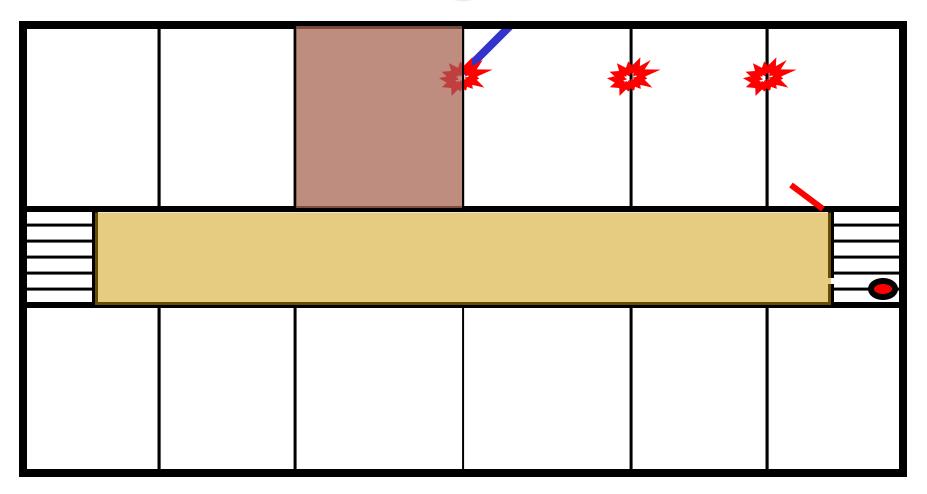

Tactical Objective

• Improve occupant tenability and interior conditions for fire attack.

How It Works

- Compartment linings and burning fuel surfaces are cooled, interfering with pyrolysis, which halts flaming combustion and in turn reduces HRR
- Reduces surface temperature of unignited fuels & stops pyrolysis.
- Flame is displaced from the surface of burning fuels.
- Steam production absorbs energy from the environment.
- *Water Map Model

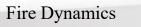
 Fire control using an elevating device



Fire control using a adjoining Balconey

Fire
 control
 by
 flanking

Flanking Attack


Fire
 control
 using a
 cellar
 nozzle

 Indirect fire attack using a floor below nozzle or nozzle and curtain

Fire Dynamics

Governors Island 2008

Boston Beacon Street

March 26th, 2014

VP = BE + SAHF

The VP=BE+SAHF assessment should be a continuous exercise until such time as the fire is fully extinguished and any other incident risks are resolved.

Remember to Evaluate the Ventilation Profile and BE+SAHF

Thank You

• <u>dynamicfire.mcbride@gmail.com</u>

https://www.firedynamicstraining.ca/

Peter McBride CRSP Division Chief Safety & Innovation (Retired) Ottawa Fire Service May 19, 2022

